HOMEWORK 4

1. From [BT]: 4.11.1, 5.12* and 5.16*
2^{*}. Let M be a smooth, compact and oriented n-manifold. The Euler characteristic of M is the number

$$
\chi(M)=\sum_{p=0}^{n}(-1)^{p} \operatorname{dim} H_{d R}^{p}(M)
$$

Show that $\chi(M)$ is a homotopy invariant of M, and $\chi(M)=0$ when n is odd.
3*. (a) Read the statement of Künneth formula from section 5 of BT] and compute the cohomology ring of $H_{d R}^{*}\left(T^{n}\right)$, where $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ denotes the n-dimensional torus.
(b) Let A be an $n \times n$ matrix with integer entries. Then, A induces a $\phi: T^{n} \rightarrow T^{n}$. Show that $\phi^{*}: H_{d R}^{1}\left(T^{n}\right) \rightarrow H_{d R}^{1}\left(T^{n}\right)$ is given by the transpose of A.
(c) Show that the degree of ϕ is the determinant of A.

References

[BT] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Springer New York, NY.

