Solutions-Problem set 1(section 1.1)

$$
\begin{aligned}
& 8 \text { (}\left|\begin{array}{l}
x+2 y+3 z=0 \\
4 x+5 y+6 z=0 \\
7 x+8 y+10 z=0
\end{array}\right| \xrightarrow[(2)-4(1)]{ }\left|\begin{array}{r}
x+2 y+3 z=0 \\
-3 y-6 z=0 \\
-6 y-11 z=0
\end{array}\right| \\
& \xrightarrow[-1 / 3(2)]{ }\left|\begin{array}{r}
x+2 y+3 z=0 \\
y+2 z=0 \\
-6 y-11 z=0
\end{array}\right| \xrightarrow[\substack{(1)-2(2) \\
(3)+6(2)}]{ }\left|\begin{array}{rr}
x & -z=0 \\
y+2 z=0 \\
z=0
\end{array}\right| \\
& \left.\xrightarrow[\begin{array}{l}
(1)+(3) \\
(2)-2(3)
\end{array}]{ } \left\lvert\, \begin{array}{lll}
x & =0 \\
& y & =0 \\
& & z=0
\end{array}\right.\right) \leadsto\left\{\begin{array}{l}
x=0 \\
y=0 \\
z=0
\end{array}\right. \\
& 20\left|\begin{array}{ll}
x+y- & z=2 \\
x+2 y+ & z=3 \\
x+y+\left(k^{2}-5\right) z=k &
\end{array}\right| \begin{array}{rr}
x+y & -z=2 \\
y & +2 z=1 \\
(3)-\mathbb{1}
\end{array}\left|\begin{array}{c}
\left(k^{2}-4\right) z=k-2
\end{array}\right| \\
& \xrightarrow[(11)-(2)]{ }\left|\begin{array}{rr}
x & -3 z=1 \\
& y \\
& +2 z=1 \\
\left(k^{2}-4\right) z=k-2
\end{array}\right|
\end{aligned}
$$

If $k^{2}-4=0$, but $k-2 \neq 0$ i.e. $k=-2$ then: N_{0} solution (inconsistent)
If $k=2$, then we have $\left|\begin{array}{rr}x & -3 z=1 \\ y+2 z=1\end{array}\right|$ therefore:
$z=t, x=1+3 t, y=1-2 t$: Infinitely many solutions
If $k^{2}-4 \neq 0$, then $\left|\begin{array}{rr}x & -3 z=1 \\ y+2 z=1 \\ (k+2) z=1\end{array}\right| \xrightarrow[\frac{1}{k+2}(3)]{ }\left|\begin{array}{r}x \\ -3 z=1 \\ y+2 z=1 \\ z=1 / k+2\end{array}\right|$

$$
\begin{aligned}
(\text { (1) }-2 \text { (3) } \\
(1)+3 \text { (3) }
\end{aligned}\left|\begin{array}{rl}
x & =1+3 / k+2 \\
y & =1-2 / k+2 \\
z & =1 / k+2
\end{array}\right|
$$

Unique Solution!
$36 \quad f(t)=a+b t+c t^{2} \longrightarrow f^{\prime}(t)=b+2 c t$
$f(1)=1 \quad|a+b+c-1| \quad|a+b+c=1|$

$$
\begin{aligned}
& 36 \\
& f(t)=a+b t+c t^{2} \longrightarrow f^{\prime}(t)=b+2 c t \\
& \begin{array}{l}
f(1)=1 \\
f(3)=3 \\
f^{\prime}(2)=3
\end{array} \longrightarrow\left|\begin{array}{r}
a+b+c=1 \\
a+3 b+9 c=3 \\
b+4 c=3
\end{array}\right| \overrightarrow{2-0}\left|\begin{array}{r}
a+b+c=1 \\
2 b+8 c=2 \\
b+4 c=3
\end{array}\right| \\
& \left.\xrightarrow[1 / 2(2)]{ }\left|\begin{array}{rr|r}
a+b+c=1 \\
b+4 c=1 \\
b+4 c=3
\end{array}\right| \begin{array}{rr}
-(1)-(2) & a \\
& b+4 c=1 \\
& 0=2
\end{array} \right\rvert\, \text { No solution! }
\end{aligned}
$$

41

$$
\left|\begin{array}{l}
x+2 y+3 z=a \\
4 x+5 y+6 z=b \\
7 x+8 y+9 z=c
\end{array}\right|\left(\begin{array}{l}
(2)-7(1)
\end{array}\left|\begin{array}{l}
x+2 y+3 z=a \\
-3 y-6 z=b-4 a \\
-6 y-12 z=c-7 a
\end{array}\right|\right.
$$

$\xrightarrow{-1 / 3(2)}$

$$
\left.\left|\begin{array}{rl}
x+2 y+3 z & =a \\
y+2 z & =-b / 3+4 / 3 a \\
-6 y-12 z & =c-7 a
\end{array}\right| \xrightarrow[(3)+6(2)]{(1)-2(2)}\left|\begin{array}{rl}
x & -z
\end{array}\right| \begin{aligned}
&-5 / 3 a+2 / 3 b \\
& y+2 z=-b / 3+4 / 3 a \\
& 0=a-2 b+c
\end{aligned} \right\rvert\,
$$

\longrightarrow The system is Consistent i.e. has at lear one solution of $a-2 b+c=0$

44
Line equation: $(x, y, z)=(1,1,1)+t\left(\frac{(2,4,-1)}{(3,5,0)-(1,1,1)}\right)=(1+2 t, 1+4 t, 1-t)$

$$
\longrightarrow t=\frac{x-1}{2}=\frac{y-1}{4}=1-z \rightarrow\left\{\begin{array} { l }
{ \frac { x - 1 } { 2 } = 1 - z } \\
{ \frac { y - 1 } { 4 } = 1 - 2 }
\end{array} \rightarrow \left\{\begin{array}{l}
x+2 z=3 \\
y+4 z=5
\end{array}\right.\right.
$$

