Solutions-Problem set 3(section 3.1)

Sunday, February 14, 2016

$$= \operatorname{Span}\left(\begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix} + \begin{bmatrix} -2\\ 0\\ -1\\ 0 \end{bmatrix}\right)$$

A =
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
 $\rightarrow \text{im}(A) = \text{Span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \end{bmatrix}\right)$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \neq 0 \checkmark \begin{bmatrix} 1 \\ 2 \end{bmatrix} : \text{not a multi} \cdot \text{of } \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ -4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ -6 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ -8 \end{bmatrix} \begin{bmatrix} 4 \\ -8 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ -2 \end{bmatrix} \implies \text{im}(A) = \text{Span}\left(\begin{bmatrix} 1 \\ -2 \end{bmatrix}\right) = \left\{ \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} \mid \left\{ e \mid R \right\} \right\} \text{ line}.$$

 $\begin{bmatrix}
34 \\
1 \\
2
\end{bmatrix} : \text{Satisfies these equation} : \begin{cases}
x_1 + x_3 = 0 \\
2x_1 + x_3 = 0
\end{cases}$ $\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} : \text{Satisfies these equation} : \begin{cases}
x_1 + x_3 = 0 \\
2x_1 + x_3 = 0
\end{cases}$ $\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} : \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix} : \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$ $\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} : \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$ $\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} : \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$ $\begin{bmatrix}
x_1 \\
x_2 \\$

Let's use the hint: $im(A) = \{\vec{y} \in \mathbb{R}^4 \mid \text{the system is Consistent}\}$ $= \{\vec{y} \in \mathbb{R}^4 \mid \{\vec{y}_1 - \vec{3}\vec{y}_3 + 2\vec{y}_4 = 0\}$ $= \{\vec{y} = \begin{bmatrix} \vec{y}_1 \\ \vec{y}_2 \\ \vec{y}_3 \end{bmatrix} \mid \begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} \vec{y}_1 \\ \vec{y}_2 \\ \vec{y}_3 \end{bmatrix} = \begin{bmatrix} \vec{o} \\ \vec{o} \end{bmatrix} \}$ $= \ker \left(\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & -2 & 1 \end{bmatrix} \right)$

A, B= rref (A)

(A) $= \{\vec{x} \mid A\vec{x} = \vec{0}\}$ $= \{\vec{x} \mid B\vec{x} = \vec{0}\}$ Lerref ([A $: \vec{0}$]) = [rref (A) $: \vec{0}$] = [B $: \vec{0}$]

Elementary row operations doesn't change the solutions of a linear system. After applying them to [A $: \vec{0}$] to Compute it's rref, we get [B $: \vec{0}$]. Therefore $= \{\vec{0}\}$ is computed it's rref, we get [B $: \vec{0}$]. Therefore $= \{\vec{0}\}$ is computed it's rref.

 \overrightarrow{b} No, for example $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\operatorname{im}(A) = \operatorname{Span}(\begin{bmatrix} 1 \\ 1 \end{bmatrix})$ $B = \operatorname{rref}(A) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \operatorname{im}(B) = \operatorname{Span}(\begin{bmatrix} 1 \\ 0 \end{bmatrix})$

44

HY (a) \vec{w} is in im(A), thus $\vec{w} = A\vec{v}$ for a vector \vec{v} . $N > A\vec{w} = A(A\vec{v}) = A^2\vec{v} = A\vec{v} = \vec{w}$ $\Rightarrow \vec{w} = A\vec{w}$

if $\operatorname{rank}(A) = 2 \implies A$ is invertible, multiply $A^2 = A$ by $A^{-1} \implies A = I_2$ if $\operatorname{rank}(A) = 0 \implies \operatorname{rref}(A) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \implies A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

To rank $(A) = 1 \Rightarrow \text{rref}(A) = \begin{bmatrix} 1 & a \\ 0 & o \end{bmatrix}$ or $\text{rref}(A) = \begin{bmatrix} 0 & 1 \\ 0 & o \end{bmatrix}$ who in both Cares, there exist <u>one Vector</u> $\vec{\nabla}$ such that $\text{ker}(A) = \text{Span}(\vec{\nabla})$.

Pick $\vec{\omega}$ in \mathbb{R}^2 s.t. $\vec{\omega}$ is not on the line spanned by $\vec{\nabla}$, thus $A\vec{\omega} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $A^2\vec{\omega} = A\vec{\omega}$ $\Rightarrow A\vec{\omega} \notin \text{ker}(A)$

