Homework 4

Due: Feb 21

- 1. Recall that a triple (E, B, π) is a fibration, if it has the homotopy lifting property with respect to (X, \emptyset) for all topological spaces X.
 - (a) Show that a fibration is a Serre fibration.
 - (b) Show that all fibers of a fibration over a path connected space B are homotopy equivalent.
 - (c) Show that for any Serre fibration (E, B, π) , $\{H_{\star}(F_x)\}$ is a local coefficient system on B.
- 2. Give an example of a filtered complex of vector spaces, whose associated spectral sequence degenerated at (a) E^1 , (b) E^2 , (c) E^n .
- 3. Write all pages of the spectral sequence for the Hopf fibration $\mathbb{S}^1 \to \mathbb{S}^{2n+1} \to \mathbb{CP}^n$. At what page does the sequence degenerate?
- 4. Read example 1.6 of Hatcher's book "Spectral Sequences" and solve exercise 2 in page 23.
- 5. Let (E, B, π) be a Serre fibration, where B is simply connected and the fiber is a homology *n*-sphere for $n \ge 1$. Show that there is an exact sequence:

 $\dots \to H_r(E) \to H_r(B) \to H_{r-n-1}(B) \to H_{r-1}(E) \to \dots$

In particular, for $0 \le r \le n-1$, $H_r(B) \simeq H_r(E)$.