Homework 9

Due: Apr 25

1. Let V be a vector space over \mathbb{R} and $B: V \otimes V \rightarrow \mathbb{R}$ a bilinear form. Suppose that there is a half-dimensional subspace L of V so that $B(v, w)=0$ for all $v, w \in L$. Prove that the signature of B is zero.
2. Show that if X is closed, oriented, simply connected n-manifold with $H_{i}(X)=0$ for $0<i<n$, then it is homotopy equivalent to S^{n}.
3. Let M be a smooth, closed, oriented n-manifold and $f: M \rightarrow S^{n-4 i}$ be a smooth map. Show that for every regular value y of f,

$$
\left\langle L_{i}(M) \cup f^{\star}(u), \mu_{M}\right\rangle=\sigma\left(f^{-1}(y)\right)
$$

where u and μ_{M} denote the fundamental cohomology class of $S^{n-4 i}$ and fundamental homology class of M.
4. a. Let ξ be the underlying oriented 4-plane bundle of the quaternion line bundle over \mathbb{H}^{m}. Use the Gysin sequence for ξ to compute $H^{\star}\left(\mathbb{H P}^{m}\right)$.
b. For $m=1$ i.e. $\mathbb{H} \mathbb{P}^{1} \cong S^{4}$, show that

$$
p_{1}(\xi)=-2 u, \quad \text { and } \quad e(\xi)=u
$$

where u is the generator of $H^{4}\left(\mathbb{H P}^{m}\right)$.
c. Milnor-Stasheff 20-A.
5. Milnor-Stasheff 19-A.
6. a. Suppose X be a smooth, closed 4-manifold, and J be an almost complex structure on X, i.e. J makes tangent space of X into a complex vector bundle. Show that, considering $J, c_{1}^{2}[X]=3 \sigma(X)+2 \chi(X)$.
b. Prove that S^{4} do not admit any almost-complex structure.
7. Fix a closed, smooth, oriented manifold M^{7} with $H^{3}(M)=H^{4}(M)=0$. Let B_{1} and B_{2} be oriented 8-manifolds with boundary $\partial B_{i}=M$. Let $C=B_{1} \cup_{M}\left(-B_{2}\right)$. Let $i: H^{4}\left(B_{j}, M\right) \rightarrow$ $H^{4}\left(B_{j}\right)$ be the map from the long exact sequence of a pair. Define $\sigma\left(B_{j}\right)$ to be the signature of the bilinear form

$$
\begin{gathered}
H^{4}\left(B_{j}, M ; \mathbb{Q}\right) \otimes H^{4}\left(B_{j}, M ; \mathbb{Q}\right) \rightarrow \mathbb{Q} \\
(a, b) \mapsto\left\langle a \cup b,\left[B_{j}\right]\right\rangle
\end{gathered}
$$

Prove that

$$
\begin{aligned}
\left\langle p_{1}(T C)^{2},[C]\right\rangle= & \left\langle i^{-1} p_{1}\left(T B_{1}\right)^{2},\left[B_{1}\right]\right\rangle-\left\langle i^{-1} p_{1}\left(T B_{2}\right)^{2},\left[B_{2}\right]\right\rangle \\
& \sigma(C)=\sigma\left(B_{1}\right)-\sigma\left(B_{2}\right)
\end{aligned}
$$

